Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukan f(x)^’ dari f(x) = √(x^2+ 1) !
Jawab :
Gunakan aturan rantai
Misalkan: z = x^2+ 1 → dz/dx=2x
Maka : y = √(z ) → dy/dz= 1/(2√(z ))= 1/(2√(x^2+ 1 ))
Maka : f(x)^’= dy/dx=( dy/dz)( dz/dx)=(1/(2√(x^2+ 1 )))(2x) = x/√(x^2+ 1 )
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan fungsi berikut ! f(x) = x^2 sinx tanx
Jawab:
f(x)^’ = d(x^2)/dx sinx tanx + x^2 d(sinx)/dx (tanx)+ x^2 (sinx) d(tanx)/dx
f(x)^’=(2x) sinx tanx + x^2 (cosx)tanx+ x^2 sinx (sec^2 x)
f(x)^’=x(2sinxtanx+xcosxtanx+xsinxsec^2 x)
for more detailed writing click on the following link
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan fungsi berikut ! f(x) = x e^x cscx
Jawab:
f(x)^’ = (d(x))/dx e^x cscx + x(d(e^x))/dx cscx + xe^x (d(cscx))/dx
f(x)^’=(1) e^x cscx + x(e^x)cscx+ x e^x (-cscx cotx)
f(x)^’= e^x cscx+ x(e^x)cscx- x e^x cscx cotx
f(x)^’= e^x cscx ( 1+x-x cotx)
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Turunkanlah setiap fungsi berikut !
(a) f(x) = √x sinx
(b) f(x) = csc x + e^x cot x
\Jawab :
(a) f(x)^’ = (1/(2√x))(sinx) + (√x )( cosx)= sinx/(2√x) + √x cosx f(x)^’ = (- csc x cot x) + [(e^x)(cotx)+(e^x )(- csc^2x)]
(b) f(x)^’ = – csc x cot x + e^x cot x – e^x csc^2 x f(x)^’ = e^x (cotx- csc^2x) – csc x cot x
for more detailed writing click on the following link
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Turunkanlah setiap fungsi berikut !
(a) f(x) = 3x^2- 2 cosx
(b) f(x) = sin x + 1/2 cotx
(c) f(x) = x^3 cos x
Jawab :
(a) f(x)^’ = 6x + 2 sin x
(b) f(x)^’ = cos x – 1/2 csc^2x
(c) f(x)^’ = (3x^2)(cosx)+(x^3 )(-sinx)= 3x^2 cosx- x^3 sinx
for more detailed writing click on the following link