0

(a) dy/dx dari fungsi x^2 + y^2=25 (b) Tentukan pula persamaan garis singgungnya di titik (3,4)

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

(a) Carilah dy/dx dari fungsi x^2+ y^2=25

(b) Tentukan persamaan garis singgungnya di titik (3,4)

Jawab:

(a) Gunakan metode turunan implisit

x^2+ y^2=25

maka∶ y= √(2&25- x^2 )

(d ( x^2+ y^2))/dx = (d( 25))/dx

(d( x^2))/dx+ (d( y^2))/dx = (d( 25))/dx

(d( x^2))/dx+ (d( y^2 )/dy)(dy/dx) = (d( 25))/dx

2x + (2y) ( dy/dx) =0

dy/dx= (-2x)/2y

dy/dx= – x/y

maka: dy/dx= – x/√(2&25- x^2 )

(b) Maka : m = – 3/√(2&25- 3^2 ) = – 3/√(2&16) = – 3/4

Maka persamaan garis singgung kurva dititik (3,4) adalah :

y – y_1=m( x- x_1)

y – 4 = – 3/4 ( x-3)

y = – 3/4 x+ 9/4+ 4

y = – 3/4 x + 25/4

atau 4y = – 3x + 25

atau 3x + 4y = 25

for more detailed writing click on the following link Carilah dy/dx dari fungsi x^2+ y^2=25 Tentukan persamaan garis singgungnya di titik (3,4)

 
0

(a) f(x) = (x^4+ 3x^2 – 2)^50 (b) f(x) = (1+ x^4 )^2/3

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah turunan pertama dari setiap fungsi berikut:

(a) f(x) = (x^4+ 3x^2-2)^50

(b) f(x) = (1+ x^4 )^(2/3)

Jawab

(d [ f(x) ]^n)/dx=(n[f(x) ]^(n-1) ) ( f^’ (x))

Maka :

(a).

(d [x^4+ 3x^2-2)^50])/dx=[50(x^4+ 3x^2-2)^49] ( 4x^3+ 6x) = 50( 4x^3+ 6x) (x^4+ 3x^2-2)^49

(b).

(d [(1+ x^4 )^(2/3)] )/dx=[2/3(1+ x^4 )^(-1/3) ] ( 4x^3) = ( 2/(3(1+ x^4 )^(1/3) ) ) ( 4x^3) = (8x^3)/(3(1+ x^4 )^(1/3) ) = (8x^3)/(3√(3&1+ x^4 ))

for more detailed writing click on the following link Tentukanlah turunan pertama dari setiap fungsi berikut: f(x) = (x^4+ 3x^2-2)^50 f(x) = 〖(1+ x^4 )〗^(2/3)

 
0

f(θ) = (e )^(sec 3θ)

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah turunan pertama : f(θ) = (e )^(sec 3θ) !

Jawab :

d (e)^f(θ)/dx= e^f(θ) d[f(θ) ]/dx

Maka :

d [(e )^(sec 3θ)]/dx= e^(sec 3θ) d( sec 3θ)/dx = e^(sec 3θ) 3 sec 3θ tan 3θ = 3e^(sec 3θ) sec 3θ tan 3θ

for more detailed writing click on the following link Tentukanlah turunan pertamanya : f(θ) = (e )^(sec 3θ) !

 
0

f(x) = (e )^(sin x)

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah turunan pertama : f(x) = (e )^(sin x) !

Jawab :

d (e)^f(x)/dx= e^(sin x) (d[f(x) ]/dx)

Maka :

d [(e )^(sin x)]/dx= e^(sin x) (d( sin x))/dx = e^(sin x)  cos x

for more detailed writing click on the following link Tentukanlah turunan pertamanya : f(x) = (e )^(sin x) !

 
0

f(x) = (x^3- 1)^1000

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah turunan pertaman: f(x) = (x^3- 1)^1000 !

Jawab :

d [ f(x) ]^n/dx=(n[f(x) ]^(n-1) ) ( f^’ (x))

Maka :

d [(x^3- 1)^1000]/dx=(1000[(x^3- 1)]^(1000-1) ) ( 3x^2) = 1000(x^3- 1)^999 ( 3x^2) = 3000x^2 (x^3- 1)^999

for more detailed writing click on the following link Tentukanlah turunan pertamanya : f(x) = (x^3- 1)^1000 !

Copyright © 2025 All rights reserved. Theme by Laptop Geek.