0

Integral dari : (a) ∫ ctg x dx (b) ∫ (x dx) /(1- x^2 )

Posted by andi telaumbanua on Feb 17, 2018 in Matematika

Tentukanlah Integral dari :

  1. ∫ ctg x dx

  2. ∫ (x dx) /(1- x^2 )

Jawab:

1. ctg x = cos⁡x/sin⁡x

misalkan: u = sin x

maka: du/dx= cos⁡x

Sehingga: dx = du/cos⁡x

∫ctg x dx = ∫ cos⁡x / sin⁡x dx = ∫( cos⁡x /u) ( du/cos⁡x) = ∫ du / u = ln⁡|u| + C = ln⁡| sin⁡x | + C

2. misalkan: u = 1- x^2

maka: du/dx = -2x

Sehingga: dx = du /(-2x)

∫ (x dx) /(1- x^2 ) = ∫ (x/u) [du /(-2x)] = 1 /(-2) ∫ du /u = 1/(-2)  ln⁡ |u| + C = 1/(-2) ln⁡ |1- x^2 | +  C

 

 

 

for a more clear author please click the link below

Tentukanlah Integral dari :

1. ∫ ctg x dx

2. ∫ (x dx)/(1- x^2)

 
0

integral dari (a) ∫ cos⁡(2x-1)dx (b) ∫ dx/(2x+3)

Posted by andi telaumbanua on Feb 17, 2018 in Matematika

Tentukanlah Integral berikut:

  1. ∫ cos⁡(2x-1)dx

  2. ∫ dx/(2x+3)

Jawab:

1. Misalkan: u = 2x-1

Maka: du/dx = 2

Sehingga: dx = du/2

∫ cos⁡(2x-1) dx = ∫ cos⁡u du /2 = 1/2 ∫ cos⁡ u du = 1/2 ( sin⁡ u ) + C = 1/2 sin⁡(2x-1) + C

2. Misalkan: u = 2x+3

Maka: du/dx = 2

Sehingga: dx = du/2

∫ dx /(2x+3) = ∫ (1 /u) (du/2) = 1/2 ∫ du / u = 1/2 ln⁡|u| +  C =  1/2 ln⁡|2x + 3| +  C

 

 

for a more clear author please click the link below

Tentukanlah Integral berikut:

1. ∫ cos⁡(2x-1)dx

2. ∫ dx /(2x+3)

 
0

(a) ∫ sin^2 3x cos⁡ 3x dx (b) ∫ cos⁡ x dx / √(sin⁡x ) tentukan integralnya

Posted by andi telaumbanua on Feb 17, 2018 in Matematika

Tentukanlah integral berikut:

  1. ∫ sin^2 3x cos⁡ 3x dx

  2. ∫ cos⁡ x dx / √(sin⁡x )

Jawab:

1. Misalkan: u = sin 3x

Maka: du/dx=3cos⁡3x

Sehingga : dx = du/(3 cos⁡3x )

Atau: cos 3x dx = du/3

∫ sin^2 3x cos⁡ 3x dx = ∫ u^2 cos⁡ 3x du / (3 cos⁡3x ) =  1/3 ∫ u^2 du = 1/3 1/3 u^3 +  c = 1/9 (sin 3x)^3  +  C

2. Misalkan: u = sin x

Maka: du/dx = cos⁡x

Sehingga : dx = du/cos⁡x

∫ cos⁡ x dx /√(sin⁡x ) = ∫ (cos⁡x ) /(u)^(1/2) du/cos⁡x = ∫ (u)^(-1/(2 )) du = 1/(- 1/2+ 1) u^(1/2) +  C = 2 √u + C = 2 √(sin⁡x ) +  C

 

 

for a more clear author please click the link below

Tentukanlah integral berikut:

1. ∫ sin^2 3x cos⁡ 3x dx

2. ∫ cos⁡ x dx / √(sin⁡x)

 
0

(a) ∫ (2x+10)dx (b)∫ √(8+5x) dx (c)∫ dx /(3x+1)^2

Posted by andi telaumbanua on Feb 17, 2018 in Matematika

Hitunglah integral berikut:

  1. ∫ (2x+10)dx

  2. ∫ √(8+5x) dx

  3. ∫ dx /(3x+1)^2

Jawab:

1.∫ (2x+10) dx = 2/(1+1) x^(1+1)+ 10x+C =  x^2+ 10x+C

2. Misalkan : u = 8 + 5x

Maka: du/dx=5 Sehingga: dx = 1/5 du

∫ √(8+5x) dx = ∫ (u)^(1/2) 1/5 du = 1/5 ∫ (u)^(1/2) du = (1/5) 1/(1/2+ 1) u^(1/2+1)+ C =  (1/5) 2/3 u^(3/2)+ C = 2/15 (8+5x)^(3/2)+ C= 2/15 (8+5x) √(8+5x)+C

3. Misalkan: u = 3x+1

Maka: du/dx=3 Sehingga : dx = du/3

∫ dx /(3x+1)^2 = ∫ (du/3) /(u)^2 = 1/3 ∫ du /(u)^2 =  1/3 1/(-2+1) (u)^(-2+1) +C = 1 /(-3) u^(-1) + C =  1 / (-3) (3x+1)^(-1) + C = (-1) /(9x+3) +  C

for a more clear author please click the link below

Hitunglah integral berikut:

1. ∫ (2x+10)dx

2. ∫ √(8+5x) dx

3. ∫ dx /(3x+1)^2

 
0

Rumus lengkap Integral tak tentu

Posted by andi telaumbanua on Feb 17, 2018 in Matematika

Rumus lengkap Integral tak tentu

  1. ∫du = u+c

  2. ∫a du =  a ∫du

  3. ∫(du+dv) = ∫du+ ∫dv

  4. ∫(du-dv) = ∫du- ∫dv

  5. ∫u^n du = u^n/(n+1)+ C ,n tidak sama dengan-1

  6. ∫du/u = ln⁡| u | + C

  7. ∫e^u du =  e^u+ c

  8. ∫a^u du =  a^u / ln⁡a + C      ,a>0 dan a ≠1

  9. ∫√(a^2- x^2 ) dx =  x/2 √(a^2- x^2 )+ a^2/2 arc sin⁡ (x/a)+ C

Rumus Integral untuk fungsi Trigonometri

  1. ∫sin⁡ u du = – cos u+C

  2. ∫cos ⁡u du = sin⁡ u+C

  3. ∫ sec^2⁡ u du = tg⁡ u+C

  4. ∫ cosec^2 u du = – ctg u+C

  5. ∫ sec⁡ u tg u du =  sec⁡ u+C

  6. ∫ cosec⁡ u ctg u du = – cosec u+C

  7. ∫ sin^n ax cos⁡ ax dx = 1/a ∫ u^n du =  1/a u^(n+1)/(n+1)+C   ,n ≠ -1 dan u=sin⁡ax

  8. ∫ sin^n ax cos⁡ ax dx =  1/a ∫ u^n du =  1/a ln⁡| u |+C   ,n= -1 dan u = sinax

  9. ∫ sin ^n u du =  – (sin^(n-1) u cos⁡u)/n+ (n-1)/n ∫ sin^(n-2) u du+c

  10. ∫ cos ^n u du= (cos^(n-1) u sin ⁡u)/n+ (n-1)/n ∫ cos^(n-2) u du+c

  11. ∫ sin⁡ ax sin⁡ bx dx = 1/2 [ sin⁡(a-b)x/(a-b)- (sin ( a+b)x)/(a+b)]+C

  12. ∫ sin⁡ ax cos⁡ bx dx = -1/2 [ cos⁡(a-b)x/(a-b)+ (cos ( a+b)x)/(a+b)]+C

  13. ∫ cos⁡ ax cos⁡ bx dx =  1/2 [ sin⁡(a-b)x/(a-b)+ (sin ( a+b)x)/(a+b)]+C

  14. ∫ sin^2 ax dx =  1/2 (x-sin⁡2ax/2a) +C

  15. ∫ cos^2 ax dx =  1/2 (x+ sin⁡2ax/2a) +C

  16. ∫ x^n sin⁡ ax dx = (-1) / a x^n cos⁡ ax+  n/a ∫ x^(n-1) cos⁡ ax dx

  17. ∫ x^n cos⁡ ax dx = 1 / a x^n sin⁡ ax+  n/a ∫ x^(n-1) sin⁡ ax dx

Rumus Integral dari Fungsi invers trigonometri

  1. ∫ du/√(1- u^2 ) = arc sin⁡ u+C

  2. ∫ -du/√(1- u^2 ) = arc  cos u+C

  3. ∫ du/(1+u^2 ) = arc tg u+C

  4. ∫ -du/(1+u^2 ) =  arc  ctg u+C

  5. ∫ du/(u √( u^2- 1)) = arc sec |u|+C

  6. ∫ -du/(u √( u^2- 1)) = arc  cosec |u|+C

Rumus integral Parsial

∫ v du= uv- ∫ u dv

Rumus Integral Rangkap dua melalui daerah tertutup s

1. ∬ f(x,y) dxdy = ∫_(b_1)^(b_2) ∫_(x_1)^(x_2) f(x,y) dxdy

2. ∬f(x,y) dxdy = ∫_(a_1)^(a_2) ∫_(y_1)^(y_2) f(x,y) dxdy

 

 

 

for a more clear author please click the link below

Rumus lengkap Integral tak tentu Rumus Integral untuk fungsi Trigonometri Rumus Integral dari Fungsi invers trigonometri

Copyright © 2024 All rights reserved. Theme by Laptop Geek.