0

Turunan pertama dan kedua dari : f(x) = x^4 e^x

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah f^’ dan f^” dari fungsi dibawah ini !

f(x) = x^4 e^x

Jawab :

f^’ = (4x^3)( e^x) + (x^4) (e^x )= e^x (x^4+ 4x^3 )

f^”= e^x (x^4+ 4x^3 )+ e^x (4x^3+ 12x^2 ) = e^x (x^4+ 8x^3+ 12x^2 )

for more detailed writing click on the following link

Tentukanlah f^’ dan f^” dari fungsi berikut: f(x) = x^4 e^x

 
0

Turunan pertama dan kedua dari : (a) f(x) = 2x/(x+1) (b) f(x) = x/(3 + e^x )

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah f^’ dan f^” dari fungsi dibawah ini !

(a)  f(x) = 2x/(x+1)

(b) f(x) = x/(3 + e^x )

Jawab :

(a)  f^’ = ((2)(x+1)- (2x)(1))/(x+1)^2

f^’ = 2/(x+1)^2

f^”= ((0)(x^2+ 2x+1)- (2)(2x+2))/(x+1)^4

f^”= (-4x-4)/(x+1)^4

(b) f^’ = ((1)(3 + e^x )- (x)( e^x))/(3 + e^x)^2

f^’ = (3+ e^x- xe^x)/(3 + e^x)^2

f^”= ((e^x- e^x- xe^x )(9+6e^x+ e^2x )-(3+ e^x- xe^x )(6e^x+ 2e^2x))/(3 + e^x)^4

f^”= ((- xe^x )(9+6e^x+ e^2x )-(3+ e^x- xe^x )(6e^x+ 2e^2x))/(3 + e^x)^4

f^”= (-9xe^x- 6xe^2x- xe^3x- 18e^2x- 6e^2x- 6e^2x- 2e^3x+6xe^2x+ 2xe^3x)/(3 + e^x)^4

f^”= (-2e^3x+ xe^3x- 30e^2x- 9xe^x)/(3 + e^x)^4

for more detailed writing click on the following link Tentukanlah (f)^’ dan (f)^” dari fungsi berikut : (a) f(x) = 2x/(x+1) (b) f(x) = x/(3 + e^x )

 
0

Carilah persamaan garis singgung kurva y = e^x/(1+ x^2) di titik (1, 1/2e) !

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah persamaan garis singgung kurva y = e^x/((1+ x^2)) di titik (1, 1/2e) !

Jawab:

Cari gradien kurva m = y_((1,1/2 e))^’

Maka :

dy/dx = (((d (e^x ))/dx) (1+ x^2 )-(d(1+ x^2 )/dx )(e^x))/(1+ x^2)^2

dy/dx = ((e^x )(1+ x^2 )- (2x)(e^x))/(1+ x^2)^2

dy/dx = (e^x (1+ x^2- 2x ))/(1+ x^2)^2

Maka :

m = y_((1,1/2 e))^’

m = (e^x (1+ x^2- 2x ))/(1+ x^2 )^2 dititik (1,1/2 e)

m = (e^1 (1+ 1^2- 2(1) ))/(1+ 1^2 )^2

m = 0

maka persamaan garis singgungnya adalah :

y -y_(1 ) = m ( x – x_1)

y – 1/2 e=0(x-1)

y – 1/2 e=0

y = 1/2 e

karena m = 0

maka: persamaan garis singgung kurva di titik (1,1/2 e) berupa garis horizontal dan konstan yaitu:

y = 1/2 e

for more detailed writing click on the following link Carilah persamaan garis singgung kurva y = e^x/((1+ x^2)) di titik (1, 1/2e) !

 
0

(a) f(x) = x^3 + 4x – 6 (b)f(x) = (x – 2)(2x + 3) (c)f(x) = 1/4(x^4 + 4) (d) f(x) = – 2x/x^5 (e) f(x) = √(5&x) + 4√(x^5 ) (f) f(x) = (x^2+ 4x+3)/√x , Tentukan turunannya!

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Tentukanlah turunan setiap fungsi beriku!

(a) f(x) = x^3 + 4x – 6

Jwb: f(x)^’ = (d(x^3))/dx + (d(4x))/dx – (d (6))/dx = 3x^2+ 4

(b)  f(x) = (x – 2)(2x + 3)

Jwb: f(x)^’ = (1)(2x + 3) + (x – 2)(2) = 2x + 3 + 2x – 4 = 4x – 1

(c)  f(x) = 1/4(x^4 + 4)

Jwb: f(x)^’ = x^3

(d)  f(x) = – 2x/x^5

Jwb: f(x)^’ = ((- 2)(x^5 )- (2x)(5x^4))/x^5^2 = (-2x^5- 10x^5)/x^10 = (-12x^5)/x^10 = -12x^(-5)

(e) f(x) = √(5&x) + 4√(x^5 )

Jwb: f(x)^’= (d(x^(1/5)))/dx + (d(4 x^(5/2))/dx = 1/5 x^((- 4)/5) + 10 x^(3/2)

(f)   f(x) = (x^2+ 4x+3)/√x

Jwb:

f(x)^’= ((d(x^2+ 4x+3)/dx)(√x)- (x^2+ 4x+3)((d(√(x)))/dx))/√x^2

f(x)^’= ((2x+4)(√x)-(x^2+ 4x+3)(1/(2√(x)))))/x

f(x)^’= (2x^(3/2)+ 4x^(1/2)-x^(3/2)/2-2x^(1/2)- (3x^((-1)/2))/2)/x

f(x)^’= (3x^(3/2)/2+2x^(1/2)- (3x^((-1)/2))/2 )/x

for more detailed writing click on the following link (a) f(x) = x^3 + 4x – 6 (b)f(x) = (x – 2)(2x + 3) (c)f(x) = 1/4(x^4 + 4) (d) f(x) = – 2x/x^5 (e) f(x) = √(5&x) + 4√(x^5 ) (f) f(x) = (x^2+ 4x+3)/√x , Tentukan turunannya!

 
0

Tentukanlah nilai dari lim (x → 1) [ln⁡x/(x-1)] dan lim (x → 0^+ ) (x ln x) !

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

1. Tentukanlah nilai dari lim(x → 1) ln⁡x/(x-1) !

Jawab:

lim(x → 1) ln x = ln 1 = 0

dan lim(x → 1) (x-1)= 0

maka akan menghasilkan bentuk 0/0

maka gunakan aturan l’ Hospital’s

lim(x → 1) ln⁡x/(x-1)= lim(x → 1)  d (ln⁡x)/dx)/d (x-1)/dx = lim(x → 1) ( (1/x)/1) = 1

2. Tentukanlah nilai dari lim(x → 0^+ ) (x ln x) !

Jawab :

ln 0 = ∞,

maka gunakan aturan l’ Hospital’s

lim(x → 0^+ ) x ln x = lim(x → 0^+ ) (ln⁡x/(1/x)) = lim(x → 0^+ ) (d(ln⁡x)/dx/d(1/x)/dx)

dimana (d(1/x))/dx= -1/x^(2 )

dan (d (ln⁡x))/dx= 1/x

 maka : lim(x → 0^+ ) (d(ln⁡x)/dx/d(1/x)/dx) = lim(x → 0^+ ) (1/x) / (-1/x^(2 ) ) = lim(x → 0^+ ) (-x) = 0

for more detailed writing click on the following link Tentukanlah nilai dari lim (x → 1) [ln⁡x/(x-1)] dan lim (x → 0^+ ) (x ln x) !

Copyright © 2025 All rights reserved. Theme by Laptop Geek.