Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah f^’ dan f^” dari fungsi dibawah ini !
f(x) = x^4 e^x
Jawab :
f^’ = (4x^3)( e^x) + (x^4) (e^x )= e^x (x^4+ 4x^3 )
f^”= e^x (x^4+ 4x^3 )+ e^x (4x^3+ 12x^2 ) = e^x (x^4+ 8x^3+ 12x^2 )
for more detailed writing click on the following link
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah f^’ dan f^” dari fungsi dibawah ini !
(a) f(x) = 2x/(x+1)
(b) f(x) = x/(3 + e^x )
Jawab :
(a) f^’ = ((2)(x+1)- (2x)(1))/(x+1)^2
f^’ = 2/(x+1)^2
f^”= ((0)(x^2+ 2x+1)- (2)(2x+2))/(x+1)^4
f^”= (-4x-4)/(x+1)^4
(b) f^’ = ((1)(3 + e^x )- (x)( e^x))/(3 + e^x)^2
f^’ = (3+ e^x- xe^x)/(3 + e^x)^2
f^”= ((e^x- e^x- xe^x )(9+6e^x+ e^2x )-(3+ e^x- xe^x )(6e^x+ 2e^2x))/(3 + e^x)^4
f^”= ((- xe^x )(9+6e^x+ e^2x )-(3+ e^x- xe^x )(6e^x+ 2e^2x))/(3 + e^x)^4
f^”= (-9xe^x- 6xe^2x- xe^3x- 18e^2x- 6e^2x- 6e^2x- 2e^3x+6xe^2x+ 2xe^3x)/(3 + e^x)^4
f^”= (-2e^3x+ xe^3x- 30e^2x- 9xe^x)/(3 + e^x)^4
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Carilah persamaan garis singgung kurva y = e^x/((1+ x^2)) di titik (1, 1/2e) !
Jawab:
Cari gradien kurva m = y_((1,1/2 e))^’
Maka :
dy/dx = (((d (e^x ))/dx) (1+ x^2 )-(d(1+ x^2 )/dx )(e^x))/(1+ x^2)^2
dy/dx = ((e^x )(1+ x^2 )- (2x)(e^x))/(1+ x^2)^2
dy/dx = (e^x (1+ x^2- 2x ))/(1+ x^2)^2
Maka :
m = y_((1,1/2 e))^’
m = (e^x (1+ x^2- 2x ))/(1+ x^2 )^2 dititik (1,1/2 e)
m = (e^1 (1+ 1^2- 2(1) ))/(1+ 1^2 )^2
m = 0
maka persamaan garis singgungnya adalah :
y -y_(1 ) = m ( x – x_1)
y – 1/2 e=0(x-1)
y – 1/2 e=0
y = 1/2 e
karena m = 0
maka: persamaan garis singgung kurva di titik (1,1/2 e) berupa garis horizontal dan konstan yaitu:
y = 1/2 e
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan setiap fungsi beriku!
(a) f(x) = x^3 + 4x – 6
Jwb: f(x)^’ = (d(x^3))/dx + (d(4x))/dx – (d (6))/dx = 3x^2+ 4
(b) f(x) = (x – 2)(2x + 3)
Jwb: f(x)^’ = (1)(2x + 3) + (x – 2)(2) = 2x + 3 + 2x – 4 = 4x – 1
(c) f(x) = 1/4(x^4 + 4)
Jwb: f(x)^’ = x^3
(d) f(x) = – 2x/x^5
Jwb: f(x)^’ = ((- 2)(x^5 )- (2x)(5x^4))/x^5^2 = (-2x^5- 10x^5)/x^10 = (-12x^5)/x^10 = -12x^(-5)
(e) f(x) = √(5&x) + 4√(x^5 )
Jwb: f(x)^’= (d(x^(1/5)))/dx + (d(4 x^(5/2))/dx = 1/5 x^((- 4)/5) + 10 x^(3/2)
(f) f(x) = (x^2+ 4x+3)/√x
Jwb:
f(x)^’= ((d(x^2+ 4x+3)/dx)(√x)- (x^2+ 4x+3)((d(√(x)))/dx))/√x^2
f(x)^’= ((2x+4)(√x)-(x^2+ 4x+3)(1/(2√(x)))))/x
f(x)^’= (2x^(3/2)+ 4x^(1/2)-x^(3/2)/2-2x^(1/2)- (3x^((-1)/2))/2)/x
f(x)^’= (3x^(3/2)/2+2x^(1/2)- (3x^((-1)/2))/2 )/x
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
1. Tentukanlah nilai dari lim(x → 1) lnx/(x-1) !
Jawab:
lim(x → 1) ln x = ln 1 = 0
dan lim(x → 1) (x-1)= 0
maka akan menghasilkan bentuk 0/0
maka gunakan aturan l’ Hospital’s
lim(x → 1) lnx/(x-1)= lim(x → 1) d (lnx)/dx)/d (x-1)/dx = lim(x → 1) ( (1/x)/1) = 1
2. Tentukanlah nilai dari lim(x → 0^+ ) (x ln x) !
Jawab :
ln 0 = ∞,
maka gunakan aturan l’ Hospital’s
lim(x → 0^+ ) x ln x = lim(x → 0^+ ) (lnx/(1/x)) = lim(x → 0^+ ) (d(lnx)/dx/d(1/x)/dx)
dimana (d(1/x))/dx= -1/x^(2 )
dan (d (lnx))/dx= 1/x
maka : lim(x → 0^+ ) (d(lnx)/dx/d(1/x)/dx) = lim(x → 0^+ ) (1/x) / (-1/x^(2 ) ) = lim(x → 0^+ ) (-x) = 0