Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan pertama : f(x) = (e )^(sin x) !
Jawab :
d (e)^f(x)/dx= e^(sin x) (d[f(x) ]/dx)
Maka :
d [(e )^(sin x)]/dx= e^(sin x) (d( sin x))/dx = e^(sin x) cos x
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan pertaman: f(x) = (x^3- 1)^1000 !
Jawab :
d [ f(x) ]^n/dx=(n[f(x) ]^(n-1) ) ( f^’ (x))
Maka :
d [(x^3- 1)^1000]/dx=(1000[(x^3- 1)]^(1000-1) ) ( 3x^2) = 1000(x^3- 1)^999 ( 3x^2) = 3000x^2 (x^3- 1)^999
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukan f(x)^’ dari f(x) = √(x^2+ 1) !
Jawab :
Gunakan aturan rantai
Misalkan: z = x^2+ 1 → dz/dx=2x
Maka : y = √(z ) → dy/dz= 1/(2√(z ))= 1/(2√(x^2+ 1 ))
Maka : f(x)^’= dy/dx=( dy/dz)( dz/dx)=(1/(2√(x^2+ 1 )))(2x) = x/√(x^2+ 1 )
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan fungsi berikut ! f(x) = x^2 sinx tanx
Jawab:
f(x)^’ = d(x^2)/dx sinx tanx + x^2 d(sinx)/dx (tanx)+ x^2 (sinx) d(tanx)/dx
f(x)^’=(2x) sinx tanx + x^2 (cosx)tanx+ x^2 sinx (sec^2 x)
f(x)^’=x(2sinxtanx+xcosxtanx+xsinxsec^2 x)
for more detailed writing click on the following link
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan fungsi berikut ! f(x) = x e^x cscx
Jawab:
f(x)^’ = (d(x))/dx e^x cscx + x(d(e^x))/dx cscx + xe^x (d(cscx))/dx
f(x)^’=(1) e^x cscx + x(e^x)cscx+ x e^x (-cscx cotx)
f(x)^’= e^x cscx+ x(e^x)cscx- x e^x cscx cotx
f(x)^’= e^x cscx ( 1+x-x cotx)