Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Carilah y^” dari fungsi x^4+ y^4 = 81 !
Jawab :
Gunakan metode turunan implisit
(d(x^4))/dx + (d(y^4))/dx= ((d(81))/dx
4x^3+(d(y^4 )/dy)(dy/dx )=0
4x^3+ 4y^3 y^’=0
y^’= -x^3/y^3
Maka :
y^”= -((d(x^3 )/dx)(y^3 )-x^3 (d(y^3 )/dx) )/(y^3)^2
y^”= -(3x^2 (y^3 )-x^3 (3y^2 )(y^’))/y^6
y^”= -(3x^2 y^3-x^3 (3y^2 )(-x^3/y^3 ))/y^6
y^”= -(3x^2 y^3+ 3x^6/y)/y^6
y^”=(-(3x^2 y^3+ 3x^6/y)/y^6 )(y/y)
y^”= -(3(x^2 y^4+ x^6) )/y^7
y^”= -(3x^2 (y^4+ x^4) )/y^7
Atau
y^”= -(3x^2 (81) )/y^7 = -243(x^2/y^7 )
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Carilah dy/dx dari fungsi sin(x + y) = y^2 cosx !
Jawab :
Gunakan metode turunan implisit
(d (sin(x + y) ))/dx = (d(y^2 cosx ))/dx
cos (x + y) ((d(x+ y))/dx) = ((d(y^2))/dx)(cosx)+(y^2 )((d(cosx))/dx)
cos (x + y) [(d(x)/dx)+(dy/dx)]=(d(y^2 )/dy)(dy/dx)(cosx)+ y^2 (- sin x)
cos (x + y) [ 1+dy/dx]=2y dy/dx(cosx)- y^2 (sin x)
cos (x + y)+ dy/dx cos (x+y) =2y dy/dx(cosx)- y^2 (sin x)
cos (x + y) + y^2 sinx = 2y dy/dx cosx – dy/dx cos (x+y)
cos (x + y) + y^2 sinx = dy/dx[2y cosx-cos (x+y) ]
dy/dx= (cos (x + y) + y^2 sinx)/(2y cosx-cos (x+y) )
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
(a) Carilah dy/dx dari fungsi x^2+ y^2=25
(b) Tentukan persamaan garis singgungnya di titik (3,4)
Jawab:
(a) Gunakan metode turunan implisit
x^2+ y^2=25
maka∶ y= √(2&25- x^2 )
(d ( x^2+ y^2))/dx = (d( 25))/dx
(d( x^2))/dx+ (d( y^2))/dx = (d( 25))/dx
(d( x^2))/dx+ (d( y^2 )/dy)(dy/dx) = (d( 25))/dx
2x + (2y) ( dy/dx) =0
dy/dx= (-2x)/2y
dy/dx= – x/y
maka: dy/dx= – x/√(2&25- x^2 )
(b) Maka : m = – 3/√(2&25- 3^2 ) = – 3/√(2&16) = – 3/4
Maka persamaan garis singgung kurva dititik (3,4) adalah :
y – y_1=m( x- x_1)
y – 4 = – 3/4 ( x-3)
y = – 3/4 x+ 9/4+ 4
y = – 3/4 x + 25/4
atau 4y = – 3x + 25
atau 3x + 4y = 25
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan pertama dari setiap fungsi berikut:
(a) f(x) = (x^4+ 3x^2-2)^50
(b) f(x) = (1+ x^4 )^(2/3)
Jawab
(d [ f(x) ]^n)/dx=(n[f(x) ]^(n-1) ) ( f^’ (x))
Maka :
(a).
(d [x^4+ 3x^2-2)^50])/dx=[50(x^4+ 3x^2-2)^49] ( 4x^3+ 6x) = 50( 4x^3+ 6x) (x^4+ 3x^2-2)^49
(b).
(d [(1+ x^4 )^(2/3)] )/dx=[2/3(1+ x^4 )^(-1/3) ] ( 4x^3) = ( 2/(3(1+ x^4 )^(1/3) ) ) ( 4x^3) = (8x^3)/(3(1+ x^4 )^(1/3) ) = (8x^3)/(3√(3&1+ x^4 ))
Posted by andi telaumbanua on Feb 11, 2018 in
Matematika
Tentukanlah turunan pertama : f(θ) = (e )^(sec 3θ) !
Jawab :
d (e)^f(θ)/dx= e^f(θ) d[f(θ) ]/dx
Maka :
d [(e )^(sec 3θ)]/dx= e^(sec 3θ) d( sec 3θ)/dx = e^(sec 3θ) 3 sec 3θ tan 3θ = 3e^(sec 3θ) sec 3θ tan 3θ