0

y = x^√x

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah turunan pertama dari y = x^√x !

Jawab:

y = x^√x

ln y = ln (x^√x )

ln y = √x ln x

d(ln y)/dx = d(√x )/dx (ln⁡x) + √x ( d(ln⁡x )/dx)

(1/y) dy/dx = 1/(2√x) ln⁡x + √x (1/x)

dy/dx = y[ln⁡x/(2√x) + √x/x]

dimana : y = x^√x

maka: dy/dx=(x^√x )[ln⁡x /(2√x)+√x/x]

Klik link di bawah ini untuk penulisan yang lebih jelas

Carilah turunan pertamanya y = x^√x

 
0

f(x) = ln (x^3+ 1)

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah turunan pertama fungsi f(x) = ln (x^3+ 1) !

Jawab: Gunakan aturan rantai Misalkan:

z = x^3+ 1 Maka : dz/dx=3x^2

y = ln z maka: dy/dz= 1/z= 1/(x^3+ 1)

sehingga:

dy/dx=(dy/dz)(dz/dx)=(1/(x^3+ 1))(3x^2) = (3x^2)/(x^3+ 1)

Klik link di bawah ini untuk penulisan yang lebih jelas

Carilah turunan pertama fungsi f(x) = ln (x^3+ 1)

 
0

1/x+ 1/y = 1

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah y^’ dari fungsi 1/x+1/y=1!

Jawab : Gunakan metode turunan implisit

1/x+1/y=1

y = x/(x-1)

maka:

(d (1/x+1/y ))/dx = (d(1))/dx

(d(1/x ))/dx+ d(1/y )/dx = (d( 1))/dx

(((0)(x)- (1)(1))/x^2 )+ (((0)(y)-(1)(dy/dx))/y^2 )=0

-1/x^2 – (dy/dx)/y^2 =0

dy/dx= -y^2/x^2

maka:

dy/dx= -(x/(x-1))^2/x^2

dy/dx= -(x^2/(x^2-2x+1))/x^2

dy/dx= -x^2/(x^4-2x^3+ x^2 )

for more detailed writing click on the following link Carilah y^’ dari fungsi 1/x+1/y=1

 
0

xy+2x+3x^2 = 4

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah y^’ dari fungsi xy+2x+3x^2=4 !

Jawab :

Gunakan metode turunan implisit

xy+2x+3x^2=4

y = (4-2x-3x^2)/x

maka:

(d (xy+2x+3x^2 ))/dx = (d(4))/dx

(d( xy))/dx+ d( 2x )/dx+ (d(3x^2))/dx = (d( 4))/dx

[(d( x)/dx)(y)+ (x)(d(y)/dx) ]+ d( 2x )/dx+ (d(3x^2))/dx = (d( 4))/dx

y+x d(y)/dx+ 2+ 6x = 0

x d(y)/dx= -(y+2+6x)

dy/dx=-(y+2+6x)/x

maka∶

dy/dx=(-((4-2x-3x^2)/x)-2-6x)/x

dy/dx=((-((4-2x-3x^2)/x)-2-6x)/x) (x/x)

dy/dx=(-4+2x+3x^2-2x-6x^2)/x^2

dy/dx=(-4-3x^2)/x^2

for more detailed writing click on the following link Carilah y^’ dari fungsi xy+2x+3x^2=4 !

 
0

x^3+y^3=1

Posted by andi telaumbanua on Feb 11, 2018 in Matematika

Carilah y^’ dari fungsi x^3+y^3=1 !

Jawab :

Gunakan metode turunan implisit

(d (x^3+y^3 ))/dx = (d( 1))/dx

(d( x^3))/dx+ (d( y^3))/dx = (d( 1))/dx

(d( x^3))/dx+ (d( y^3 )/dy)(dy/dx) = (d( 1))/dx

3x^2 + (3y^2) ( dy/dx) =0

dy/dx= (-3x^2)/(3y^2 )

dy/dx= – x^2/y^2

for more detailed writing click on the following link Carilah y^’ dari fungsi x^3+y^3=1 !

Copyright © 2024 All rights reserved. Theme by Laptop Geek.