Posted by andi telaumbanua on Jul 29, 2018 in
Matematika |
Tentukanlah turunan pertama dari s(x)=(sin(2x))^3x
Jawab:
Misalkan:
y = s(x)=(sin(2x))^3x
maka:
y =(sin(2x))^3x
lny = ln(sin(2x))^3x
lny =3x ln(sin(2x))
Kemudian kedua ruas diturunkan:
d/dx (lny )= d/dx (3x ln(sin(2x)))
(1/y) dy/dx =3 ln(sin(2x)) + 3x 1/sin(2x) d/dx (sin(2x))
(1/y) dy/dx=3 ln(sin(2x)) + 3x 1/sin(2x) 2 cos(2x)
(1/y) dy/dx=3 ln(sin(2x)) + 6x cos(2x)/sin(2x)
(1/y) dy/dx=3 ln(sin(2x)) + 6x cot(2x)
dy/dx=y [3 ln(sin(2x))+ 6x cot(2x)]
Karena: y=(sin(2x))^3x
Maka:
dy/dx=(sin(2x))^3x [3 ln(sin(2x))+ 6x cot(2x)]