Deret MacLaurin

Posted by andi telaumbanua on Jul 28, 2018 in Matematika |

Deret MacLaurin:

1/(1-x)=1+x+x^2+x^3+⋯

1/(1+x)=1-x+x^2-x^3+⋯

1/(1-x^2 )=1+x^2+x^4+x^6+⋯

1/(1-x)^2 =1+2x+3x^2+4x^3+⋯

ln(1+x) = x – x^2/2+x^3/3-x^4/4+⋯

e^x=1+x+x^2/2!+x^3/3!+⋯

1/tan⁡x =x-x^3/3+x^5/5-x^7/7+⋯

ln(1-x) = x + x^2/2+x^3/3+x^4/4+⋯

sin x = x – x^3/3!+x^5/5!-x^7/7!+⋯

cos x = 1 – x^2/2!+x^4/4!-x^6/6!+⋯

ln(1-x)^2=x+x^2+x^3+x^4+⋯

sinh x = x + x^3/3!+x^5/5!+x^7/7!+⋯

ln(1+x)=x-x^2/2+x^3/3-x^4/4+⋯

cosh x = 1 + x^2/2!+x^4/4!+x^6/6!+⋯

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.