Posted by andi telaumbanua on Jul 28, 2018 in
Matematika |
Deret MacLaurin:
1/(1-x)=1+x+x^2+x^3+⋯
1/(1+x)=1-x+x^2-x^3+⋯
1/(1-x^2 )=1+x^2+x^4+x^6+⋯
1/(1-x)^2 =1+2x+3x^2+4x^3+⋯
ln(1+x) = x – x^2/2+x^3/3-x^4/4+⋯
e^x=1+x+x^2/2!+x^3/3!+⋯
1/tanx =x-x^3/3+x^5/5-x^7/7+⋯
ln(1-x) = x + x^2/2+x^3/3+x^4/4+⋯
sin x = x – x^3/3!+x^5/5!-x^7/7!+⋯
cos x = 1 – x^2/2!+x^4/4!-x^6/6!+⋯
ln(1-x)^2=x+x^2+x^3+x^4+⋯
sinh x = x + x^3/3!+x^5/5!+x^7/7!+⋯
ln(1+x)=x-x^2/2+x^3/3-x^4/4+⋯
cosh x = 1 + x^2/2!+x^4/4!+x^6/6!+⋯