Posted by andi telaumbanua on Jul 28, 2018 in
Matematika |
Tentukan deret MacLaurin dari f(x) = e^(-x) cos(x)
Jawab:
Deret MacLaurin;
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯
Maka:
f(x) = e^(-x) cosx
f^1 (x)= – e^(-x) cosx-e^(-x) sinx
f^2 (x)= e^(-x) cosx+e^(-x) sinx+e^(-x) sinx-e^(-x) cosx =2e^(-x) sinx
f^3 (x)=-2e^(-x) sinx+2e^(-x) cos x
f^4 (x)= 2e^(-x) sinx-2e^(-x) cos x-2e^(-x) cosx – 2e^(-x) sinx= -4e^(-x) cosx
Maka:
f(0) = e^(-0) cos0=1
f^1 (0)= -e^(-0) cos0-e^(-0) sin0=-1-0=-1
f^2 (0)=2e^(-0) sin0=0
f^3 (0)= -2e^(-0) sin0+2e^(-0) cos 0=0+2=2
f^4 (0)= -4e^(-0) cos0=-4
Maka: deret macLaurinnya
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯
f(x) = 1 + (-1)(x)+0/2! x^2+2/3! x^3+(-4)/4! x^4+⋯
f(x) = 1 -x+0+1/3 x^3-1/6 x^4+⋯
f(x) = 1 – x+1/3 x^3-1/6 x^4+⋯