Posted by andi telaumbanua on Jul 28, 2018 in
Matematika |
Tentukan turunan pertama dari sin(xy )+x^2=y^2+ 1
Jawab:
d/dx(sin(xy)+d/dx (x^2 )= d/dx (y^2 )+d/dx(1)
Pertama Turunkan: d/dx(sin(xy)
d/dx(sin(xy)=[ (1)(y)+ (x)(dy/dx)][cosxy]
=(y+x dy/dx)(cos(xy)
=y cos(xy)+x dy/dx cos(xy)
Maka:
d/dx(sin(xy)+ d/dx (x^2 )= d/dx (y^2 )+d/dx(1)
y cos(xy)+x dy/dx cosxy + 2x = 2y dy/dx + 0
x dy/dx cos(xy)-2y dy/dx = -y cos(xy)-2x
dy/dx (x cos(xy)-2y)= -y cos(xy)-2x
dy/dx = (-y cos(xy)-2x)/(x cos(xy)-2y)