Posted by andi telaumbanua on Jul 28, 2018 in
Matematika |
Tentukan turunan pertama dari tan (xy) – 2y = 0
Jawab:
d/dx(tan(xy)-d/dx(2y)=d/dx(0)
Pertama Turunkan: d/dx(tan(xy)
d/dx(tan(xy)=[(1)(y)+ (x)(dy/dx)][sec^2(xy)]
=(y+x dy/dx)(sec^2 (xy)
=y sec^2(xy) + x dy/dx sec^2(xy)
Maka:
d/dx(tan(xy)-d/dx(2y)= d/dx()
y sec^2(xy) + x dy/dx sec^2(xy) -2 dy/dx = 0
x dy/dx sec^2(xy)-2 dy/dx = -y sec^2xy
dy/dx(x sec^2(xy)-2) = -y sec^2(xy)
dy/dx = -y sec^2(xy))/(x sec^2(xy)-2)