integral dari (a) ∫ sin⁡ 2x cos⁡ 3x dx (b) ∫ sin^2 3x cos⁡ 3x dx

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Tentukanlah integral dari:

  1. ∫ sin⁡ 2x cos⁡ 3x dx

  2. ∫ sin^2 3x cos⁡ 3x dx

Jawab:

1. ∫ sin⁡ ax cos⁡ bx dx =  -1 /2  [ cos⁡(a-b)x / (a-b) + (cos ( a+b)x) /(a+b)] + C

Maka:

∫ sin⁡ 2x cos⁡ 3x dx = -1 /2 [ cos⁡(2-3)x /(2-3) + (cos ( 2+3)x) /(2+3)] + C

∫ sin⁡ 2x cos⁡ 3x dx =  – 1 /2 [ cos⁡(-x) /(-1) + (cos 5x) /5 ] + C

∫ sin⁡ 2x cos⁡ 3x dx =  -cos ⁡5x /10 + cos⁡x /2  + C

 

2. Misalkan: u = sin 3x

Maka: du/dx = 3 cos⁡3x

Sehingga: dx = du /(3 cos⁡3x )

∫ sin^2 3x cos⁡ 3x dx =  ∫ u^2 cos⁡ 3x  (du/3 cos ⁡3x )

∫ sin^2 3x cos⁡ 3x dx = 1 /3 ∫u^2  du

∫ sin^2 3x cos⁡ 3x dx = 1/3 1/3 u^3 + C

∫ sin^2 3x cos⁡ 3x dx = 1/9 (sin 3x)^3 +  C

∫ sin^2 3x cos⁡ 3x dx = 1/9 sin^3 3x +  C

 

 

 

 

for a more clear author please click the link below

Tentukanlah integral dari:
1. ∫ sin⁡ 2x cos⁡ 3x dx
2. ∫ sin^2 3x cos⁡ 3x dx

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.