Integral dari ∫ sin^4 x cos^3 x dx

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Tentukanlah Integral dari :

∫ sin^4 x cos^3 x dx

Jawab:

Misalkan: u = sin x

Maka: du/dx = cos⁡x

Sehingga: dx = du/cos⁡x

∫ sin^4 x cos^3 x dx = ∫u^4 cos^3 x du/cos⁡x

∫ sin^4 x cos^3 x dx = ∫ u^4 cos^3 x (du/cos⁡ x)

∫ sin^4 x cos^3 x dx = ∫ u^4 cos^2 x du

Karena: cos^2 x = 1 – sin^2 x

Maka:

∫ sin^4 x cos^3 x dx =  ∫ u^4 (1- sin^2 x) du

Karena: u = sin x

Maka:

∫ sin^4 x cos^3 x dx =  ∫ u^4 (1- u^2) du

∫ sin^4 x cos^3 x dx =  ∫ (u^4- u^6) du

∫ sin^4 x cos^3 x dx = 1 /(4+1) u^(4+1) – 1 /(6+1) u^(6+1) +  C

∫ sin^4 x cos^3 x dx = 1 /5 u^5 – 1 /7 u^7 +  C

∫ sin^4 x  cos^3 x dx =  1 /5 sin^5 x –  1 /7 sin^7 x +  C

 

 

 

 

for a more clear author please click the link below

Tentukanlah Integral dari : ∫ sin〗^4 x cos^3 x dx

2 Comments

Rey
Feb 23, 2018 at 8:40 am

kurang paham;(


 
andi telaumbanua
Feb 24, 2018 at 4:50 am

bagian mana?


 

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.