integral dari ∫ sin^4 x dx

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Tentukanlah integral dari : ∫ sin^4 x dx

 

Jawab:

∫ sin ^n u du =  – (sin^(n-1) u cos⁡u) /n + (n-1) /n ∫ sin^(n-2) u du + c

Maka:

∫ sin^4 x dx = – (sin^(4-1) x cos⁡x) /4 +  (4-1)/4 ∫ sin^(4-2) x dx

∫ sin^4 x dx = – (sin^3 x cos⁡x) /4 +  3/4 ∫ sin^2 x dx

∫ sin^4 x dx = – (sin^3 x cos⁡x) /4 + 3/4 [- (sin^(2-1) x cos⁡x) /2 + (2-1)/2 ∫ sin^(2-2) x dx ]

∫ sin^4 x dx = – (sin^3 x cos⁡x) /4  + 3/4 [- (sin^1 x cos⁡x) /2 + 1/2 ∫ sin^0 x dx ]

∫ sin^4 x dx = – (sin^3 x cos⁡x) /4 + 3/4 [- (sin x cos⁡x)/2 + 1/2 ∫ dx ]

∫ sin^4 x dx = – ( sin^3 x cos⁡x) /4 +  3/4 [- (sin x cos⁡x)/2+1/2 (x) ] + C

∫ sin^4 x dx =  – (sin^3 x cos⁡x) /4 – (3 sin x cos⁡x) / 8 +  (3 x) / 8 + C

for a more clear author please click the link below

Tentukanlah integral dari : ∫ sin^4 x dx

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.