Posted by andi telaumbanua on Feb 17, 2018 in
Matematika |
Tentukanlah integral dari : ∫ sin^4 x dx
Jawab:
∫ sin ^n u du = – (sin^(n-1) u cosu) /n + (n-1) /n ∫ sin^(n-2) u du + c
Maka:
∫ sin^4 x dx = – (sin^(4-1) x cosx) /4 + (4-1)/4 ∫ sin^(4-2) x dx
∫ sin^4 x dx = – (sin^3 x cosx) /4 + 3/4 ∫ sin^2 x dx
∫ sin^4 x dx = – (sin^3 x cosx) /4 + 3/4 [- (sin^(2-1) x cosx) /2 + (2-1)/2 ∫ sin^(2-2) x dx ]
∫ sin^4 x dx = – (sin^3 x cosx) /4 + 3/4 [- (sin^1 x cosx) /2 + 1/2 ∫ sin^0 x dx ]
∫ sin^4 x dx = – (sin^3 x cosx) /4 + 3/4 [- (sin x cosx)/2 + 1/2 ∫ dx ]
∫ sin^4 x dx = – ( sin^3 x cosx) /4 + 3/4 [- (sin x cosx)/2+1/2 (x) ] + C
∫ sin^4 x dx = – (sin^3 x cosx) /4 – (3 sin x cosx) / 8 + (3 x) / 8 + C
for a more clear author please click the link below