y = x^4 sin⁡ (1/x^2)

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Tentukan turunan pertama dari y = x^4  sin⁡ (1/x^2)  !

Jawab:

y = uv maka : y^’= u^’ v+uv^’

Pertama cari dy/dx dari sin⁡ (1/x^2)

Maka:

dy/dx =  cos⁡ (1/x^2)  d(1/x^2 )/dx

dy/dx = – 2x/x^4 (cos 1/x^2 )

Kemudian carilah dy/dx dari y = x^4 sin⁡ (1/x^2 )

dy/dx =  d(x^4)/dx  sin⁡ (1/x^2 ) + x^4  d(sin⁡(1/x^2 )/dx

dy/dx = 4x^3 sin⁡ (1/x^2) + x^4 [- 2x/x^4 (cos 1/x^2 )]

dy/dx = 4x^3 sin⁡ (1/x^2 ) – 2x cos 1/x^2

dy/dx = 2x(2x^2 sin (1/x^2 ) – cos (1/x^2 )

 

 

for a more clear author please click the link below

Tentukan turunan pertama dari y = x^4 sin⁡(1/x^2)

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.