Posted by andi telaumbanua on Feb 13, 2018 in
Matematika |
Tentukan turunan pertama dari bentuk implisit x^2 sin(xy)+y = x !
Jawab : Turunan bentuk implisit
Pertama kita turunkan dulu sin (xy)
Misalkan : u = xy maka: du/dx=(1)(y)+ (x)(dy/dx)=y+x dy/dx
Maka: y = sin u maka: dy/du=cosu=cos(xy)
Sehingga :
dy/dx = (dy/du)(du/dx)
dy/dx = (cos(xy) )(y+x dy/dx)
dy/dx = y cos(xy) + x cos(xy) dy/dx
Kedua kita turunkan x^2 sin(xy)
d[x^2 sin(xy)]/dx = 2xsin(xy) + x^2 [y cos(xy) + x cos(xy) dy/dx]
d[x^2 sin(xy)]/dx = 2xsin(xy) + x^2 y cos(xy) + x^3cos(xy) dy/dx
Maka:
maka turunan x^2 sin(xy)+ y = x adalah
d[x^2 sin(xy)] /dx + dy/dx = dx/dx
2xsin(xy) + x^2 y cos(xy) + x^3cos(xy) dy/dx + dy/dx = 1
dy/dx [x^3cos(xy) + 1] = 1-2x sin(xy) – x^2 y cos(xy)
dy/dx = [1- 2x sin(xy) – x^2 y cos(xy)] / [x^3cos(xy) + 1]