Posted by andi telaumbanua on Feb 11, 2018 in
Matematika |
Carilah y^’ dari fungsi 1/x+1/y=1!
Jawab : Gunakan metode turunan implisit
1/x+1/y=1
y = x/(x-1)
maka:
(d (1/x+1/y ))/dx = (d(1))/dx
(d(1/x ))/dx+ d(1/y )/dx = (d( 1))/dx
(((0)(x)- (1)(1))/x^2 )+ (((0)(y)-(1)(dy/dx))/y^2 )=0
-1/x^2 – (dy/dx)/y^2 =0
dy/dx= -y^2/x^2
maka:
dy/dx= -(x/(x-1))^2/x^2
dy/dx= -(x^2/(x^2-2x+1))/x^2
dy/dx= -x^2/(x^4-2x^3+ x^2 )