Posted by andi telaumbanua on Feb 11, 2018 in
Matematika |
Carilah y^’ dari fungsi xy+2x+3x^2=4 !
Jawab :
Gunakan metode turunan implisit
xy+2x+3x^2=4
y = (4-2x-3x^2)/x
maka:
(d (xy+2x+3x^2 ))/dx = (d(4))/dx
(d( xy))/dx+ d( 2x )/dx+ (d(3x^2))/dx = (d( 4))/dx
[(d( x)/dx)(y)+ (x)(d(y)/dx) ]+ d( 2x )/dx+ (d(3x^2))/dx = (d( 4))/dx
y+x d(y)/dx+ 2+ 6x = 0
x d(y)/dx= -(y+2+6x)
dy/dx=-(y+2+6x)/x
maka∶
dy/dx=(-((4-2x-3x^2)/x)-2-6x)/x
dy/dx=((-((4-2x-3x^2)/x)-2-6x)/x) (x/x)
dy/dx=(-4+2x+3x^2-2x-6x^2)/x^2
dy/dx=(-4-3x^2)/x^2