Posted by andi telaumbanua on Feb 11, 2018 in
Matematika |
Carilah y^’ dari fungsi x^3+y^3=1 !
Jawab :
Gunakan metode turunan implisit
(d (x^3+y^3 ))/dx = (d( 1))/dx
(d( x^3))/dx+ (d( y^3))/dx = (d( 1))/dx
(d( x^3))/dx+ (d( y^3 )/dy)(dy/dx) = (d( 1))/dx
3x^2 + (3y^2) ( dy/dx) =0
dy/dx= (-3x^2)/(3y^2 )
dy/dx= – x^2/y^2