Posted by andi telaumbanua on Feb 11, 2018 in
Matematika |
Carilah y^” dari fungsi x^4+ y^4 = 81 !
Jawab :
Gunakan metode turunan implisit
(d(x^4))/dx + (d(y^4))/dx= ((d(81))/dx
4x^3+(d(y^4 )/dy)(dy/dx )=0
4x^3+ 4y^3 y^’=0
y^’= -x^3/y^3
Maka :
y^”= -((d(x^3 )/dx)(y^3 )-x^3 (d(y^3 )/dx) )/(y^3)^2
y^”= -(3x^2 (y^3 )-x^3 (3y^2 )(y^’))/y^6
y^”= -(3x^2 y^3-x^3 (3y^2 )(-x^3/y^3 ))/y^6
y^”= -(3x^2 y^3+ 3x^6/y)/y^6
y^”=(-(3x^2 y^3+ 3x^6/y)/y^6 )(y/y)
y^”= -(3(x^2 y^4+ x^6) )/y^7
y^”= -(3x^2 (y^4+ x^4) )/y^7
Atau
y^”= -(3x^2 (81) )/y^7 = -243(x^2/y^7 )