Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Tentukanlah
a. ∫[e^(3/x)/x^2] dx
b. ∫x^2/(x^3+2) dx
Jawab:
a. Misalkan:
u = 3/x
dx = (-du x^2)/3
maka:
∫[e^(3/x)]/[x^2] dx= ∫e^u/x^2 [((-du x^2)/3)]
=-1/3 ∫e^u du
=-1/3 (e^u )
=-1/3 e^(3/x)+C
b. Misalkan:
u = x^3+2
dx = du/(3x^2 )
maka:
∫x^2/(x^3+2) dx =∫x^2/u (du/(3x^2 ))
=1/3 ∫du/u
=1/3 (ln u)+C
=1/3 ln(x^3+2)+C
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Tentukan turunan pertama dari x^2 sin(xy)+ y=x
Jawab:
d/dx(x^2 sin(xy)+d/dx (y) = d/dx (x)
Pertama Turunkan: d/dx(sin(xy)
d/dx(sin(xy)=[ (1)(y)+ (x)(dy/dx)][cos(xy)]
=(y+x dy/dx)(cos(xy)
=y cos(xy)+x dy/dx cos(xy)
Maka:
d/dx(x^2 sin(xy))+ d/dx (y)= d/dx (x)
2x(sin(xy))+x^2 (y cos(xy)+ x dy/dx cos(xy)+dy/dx =1
2x sin(xy)+x^2 ycos(xy)+x^3 dy/dx cos(xy)+dy/dx = 1
dy/dx [x^3 cos(xy)+1]= 1-2xsin(xy) – x^2 ycos(xy)
dy/dx = [1-2xsin(xy)-x^2 ycos(xy)]/[x^3 cos(xy)+1]
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Tentukan turunan pertama dari sin(xy )+x^2=y^2+ 1
Jawab:
d/dx(sin(xy)+d/dx (x^2 )= d/dx (y^2 )+d/dx(1)
Pertama Turunkan: d/dx(sin(xy)
d/dx(sin(xy)=[ (1)(y)+ (x)(dy/dx)][cosxy]
=(y+x dy/dx)(cos(xy)
=y cos(xy)+x dy/dx cos(xy)
Maka:
d/dx(sin(xy)+ d/dx (x^2 )= d/dx (y^2 )+d/dx(1)
y cos(xy)+x dy/dx cosxy + 2x = 2y dy/dx + 0
x dy/dx cos(xy)-2y dy/dx = -y cos(xy)-2x
dy/dx (x cos(xy)-2y)= -y cos(xy)-2x
dy/dx = (-y cos(xy)-2x)/(x cos(xy)-2y)
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Tentukan turunan pertama dari tan (xy) – 2y = 0
Jawab:
d/dx(tan(xy)-d/dx(2y)=d/dx(0)
Pertama Turunkan: d/dx(tan(xy)
d/dx(tan(xy)=[(1)(y)+ (x)(dy/dx)][sec^2(xy)]
=(y+x dy/dx)(sec^2 (xy)
=y sec^2(xy) + x dy/dx sec^2(xy)
Maka:
d/dx(tan(xy)-d/dx(2y)= d/dx()
y sec^2(xy) + x dy/dx sec^2(xy) -2 dy/dx = 0
x dy/dx sec^2(xy)-2 dy/dx = -y sec^2xy
dy/dx(x sec^2(xy)-2) = -y sec^2(xy)
dy/dx = -y sec^2(xy))/(x sec^2(xy)-2)
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Turunan pertama dari f(x) = (1 + 1/x^2 )(1+1/x^3 )
Jawab:
f(x) = U*V
f^’ (x)= U^’ V* UV^’
Maka:
f(x) = (1 + 1/x^2 )(1+1/x^3 )
f^’ (x)=((0-2x)/x^4 )((0-3x)/x^6 )
f^’ (x)=(2x/x^4 )(3x/x^6 )
f^’ (x)=((6x^2)/x^10 )
f^’ (x)=(6/x^8 )