Posted by andi telaumbanua on Jul 29, 2018 in
Matematika
Diberikan fungsi f dan g dengan rumus f(x) = 2x + 3 dan g(x) = cos^2 (3x+1).
Tentukan turuna pertama dari: (g(x))/(f(x)) untuk x≠-2/3
Jawab:
Misalkan: h(x) =(g(x))/(f(x))
Maka: h(x) =(g(x))/(f(x))=(cos^2 (3x+1))/(2x + 3)
Misalkan:
u = 3x +1
du/dx=3
dan
v = cos u
dv/du=-sin(u)=-sin(3x+1)
dan
g(x) = y = v^2
dy/dv=2v=2cos(u)=2 cos(3x+1)
Sehingga:
g^1 (x)=(du/dx)(dv/du)(dy/dv)=3(-sin(3x+1))(2 cos(3x+1))=-6sin(3x+1) cos(3x+1)
Sehingga:
h^1 (x)=(g^1 (x)f(x)-f^1 (x)g(x))/(f(x))^2
h^1 (x)=[(-6 sin(3x+1) cos(3x+1) )(2x + 3)-2cos^2 (3x+1)]/[(2x + 3)^2]
Posted by andi telaumbanua on Jul 29, 2018 in
Matematika
Tentukanlah turunan pertama dari s(x)=(sin(2x))^3x
Jawab:
Misalkan:
y = s(x)=(sin(2x))^3x
maka:
y =(sin(2x))^3x
lny = ln(sin(2x))^3x
lny =3x ln(sin(2x))
Kemudian kedua ruas diturunkan:
d/dx (lny )= d/dx (3x ln(sin(2x)))
(1/y) dy/dx =3 ln(sin(2x)) + 3x 1/sin(2x) d/dx (sin(2x))
(1/y) dy/dx=3 ln(sin(2x)) + 3x 1/sin(2x) 2 cos(2x)
(1/y) dy/dx=3 ln(sin(2x)) + 6x cos(2x)/sin(2x)
(1/y) dy/dx=3 ln(sin(2x)) + 6x cot(2x)
dy/dx=y [3 ln(sin(2x))+ 6x cot(2x)]
Karena: y=(sin(2x))^3x
Maka:
dy/dx=(sin(2x))^3x [3 ln(sin(2x))+ 6x cot(2x)]
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Diberikan fungsi kuadrat dengan rumus h(x) = ax^2+bx+c. Tentukanlah konstanta a,b,danc jika diketahui bahwa h(1) = 7 , h^1 (1)=2 ,dan h^2 (1)=-5.
Jawab:
h(x) = ax^2+bx+c
h(1) = 7
a+b+c=7 ……..Pers 1)
h^1 (x)=2ax+b
Maka:
h^1 (1)=2
2a+b=2 …….Pers 2)
h^2 (1)=2a
h^2 (1)=-5
2a= -5
a= – 5/2
Maka:
2a+b=2
2( – 5/2)+b=2
-5+b=2
b = 7
sehingga
a+b+c=7
-5/2+7+c=7
c = 5/2
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Tentukan suku Pertama hingga suku ketiga dari deret MacLaurin fungsi
h(x) = (cos x) ln (1+x)
Jawab:
Deret MacLaurin;
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯
maka:
cos x = 1 – x^2/2!+x^4/4!-x^6/6!+⋯
ln(1+x)= x-x^2/2+x^3/3-x^4/4+⋯
Sehingga deret MacLaurin dari h(x) = (cos x) ln (1+x) adalah
h(x) = (cos x) ln (1+x)
h(x) = (1 – x^2/2!+x^4/4!-x^6/6!+⋯) (x-x^2/2+x^3/3-x^4/4+⋯)
h(x) = x – x^2/2!+x^3/3-x^4/4– x^3/2!+x^4/4-x^5/6+x^6/8+x^5/4!-x^6/48+⋯
h(x) = x – x^2/2-x^3/6-x^4/4+x^4/4-3x^5/24+(5x^6)/48+⋯
h(x) = x – x^2/2 – x^3/6 – 3x^5/24 + (5x^6)/48 +⋯
Posted by andi telaumbanua on Jul 28, 2018 in
Matematika
Deret MacLaurin:
1/(1-x)=1+x+x^2+x^3+⋯
1/(1+x)=1-x+x^2-x^3+⋯
1/(1-x^2 )=1+x^2+x^4+x^6+⋯
1/(1-x)^2 =1+2x+3x^2+4x^3+⋯
ln(1+x) = x – x^2/2+x^3/3-x^4/4+⋯
e^x=1+x+x^2/2!+x^3/3!+⋯
1/tanx =x-x^3/3+x^5/5-x^7/7+⋯
ln(1-x) = x + x^2/2+x^3/3+x^4/4+⋯
sin x = x – x^3/3!+x^5/5!-x^7/7!+⋯
cos x = 1 – x^2/2!+x^4/4!-x^6/6!+⋯
ln(1-x)^2=x+x^2+x^3+x^4+⋯
sinh x = x + x^3/3!+x^5/5!+x^7/7!+⋯
ln(1+x)=x-x^2/2+x^3/3-x^4/4+⋯
cosh x = 1 + x^2/2!+x^4/4!+x^6/6!+⋯