0

Tentukan deret MacLaurin dari f(x) = e^x sin(x) 

Posted by andi telaumbanua on Jul 28, 2018 in Matematika

Tentukan deret MacLaurin dari f(x) = e^x sin(x)

Jawab:

Deret MacLaurin;
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯

Maka:

f(x) = e^x sinx
f^1 (x)= e^x sinx+e^x cos⁡x
f^2 (x)= e^x sinx+e^x cos⁡x+e^x cos⁡x-e^x sinx=2e^x cos⁡x
f^3 (x)= 2e^x cos⁡x-2e^x sin⁡x
f^4 (x)= 2e^x cos⁡x-2e^x sin⁡x -2e^x sin⁡x-2e^x cos⁡x= -4e^x sin⁡x

Maka:
f(0) = e^0 sin⁡0 = 0
f^1 (0)= e^0 sin⁡0+e^0 cos⁡0 = 0+1=1
f^2 (0)= 2e^0 cos⁡0= 2
f^3 (0)= 2e^0 cos⁡0-2e^0 sin⁡0=2-0=2
f^4 (0)= -4e^0 sin⁡0=0

Maka: deret macLaurinnya
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯
f(x) = 0 + (1)(x)+2/2! x^2+2/3! x^3+0/4! x^4+⋯
f(x) = 0 + x+x^2+1/3 x^3+0+⋯
f(x) = x+x^2+1/3 x^3+⋯

 
0

Tentukan deret MacLaurin dari f(x) = e^(-x) sin(x)

Posted by andi telaumbanua on Jul 28, 2018 in Matematika

Tentukan deret MacLaurin dari f(x) = e^(-x) sinx

Jawab:

Deret MacLaurin;
f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯

Maka:
f(x) = e^(-x) sinx
f^1 (x)= -e^(-x) sinx+e^(-x) cosx
f^2 (x)= e^(-x) sinx – e^(-x) cosx  -e^(-x) cos⁡x – e^(-x) sinx =-2e^(-x) cosx
f^3 (x)= 2e^(-x) cos⁡ (x) + 2e^(-x) sin⁡x
f^4 (x)= -2e^(-x) cos⁡ x -2e^(-x) sin⁡x-2e^(-x) sin⁡ x+2e^(-x) cos⁡x

Maka:
f(0) = e^(-0) sin⁡ 0=0
f^1 (0)= -e^(-0) sin⁡ 0 + e^(-0) cos⁡0=0+1=1
f^2 (0)=-2e^(-0) cos⁡ 0 = -2
f^3 (0)= 2e^(-0) cos⁡ 0+2e^(-0) sin⁡ 0=2+0=2
f^4 (0)= -2e^(-0) cos⁡ 0-2e^(-0) sin⁡ 0 -2e^(-0) sin⁡0+2e^(-0)cos⁡0 = -2-0-0+2=0

Maka: deret macLaurinnya

f(x) = f(0) + f^1 (0)(x)+(f^2 (0))/2! x^2+(f^3 (0))/3! x^3+(f^4 (0))/4! x^4+⋯
f(x) = 0 + (1)(x)+(-2)/2! x^2+2/3! x^3+0/4! x^4+⋯
f(x) = 0 + x-x^2+1/3 x^3+0+⋯
f(x) = x-x^2+1/3 x^3+⋯

 
0

Tentukan turunan pertama dari : f(x) = 3^(2x+1)+ 2^sin2x

Posted by andi telaumbanua on Jul 28, 2018 in Matematika

Tentukan turunan pertama dari : f(x) = 3^(2x+1)+ 2^sin2x

Jawab:

Note;

a^x =e^xlna
d/dx (a^x )= d/dx (e^xlna )=(e^xlna )(ln⁡a)= a^x lna

Maka: turunan pertama dari : f(x) = 3^(2x+1)+ 2^sin2x adalah

dy/dx = d/dx (3^(2x+1) )+ d/dx (2^sin2x )

= d/dx ( e^(2x+1)ln3 )+d/dx (e^((sin⁡(2x)ln2) )

= e^(2x+1)ln3 d/dx [(2x+1)ln3] + e^((sin⁡(2x)ln2) d/dx [sin⁡(2x)ln2]

=e^(2x+1)ln3 d/dx [(2xln3+ln3) ]+e^((sin⁡(2x)ln2) d/dx [sin⁡(2x)ln2]

=e^(2x+1)ln3 (2ln3)+e^((sin⁡(2x)ln2) (2cos⁡(2x) ln⁡2

Karena: e^(2x+1)ln3=3^(2x+1) dan e^((sin⁡(2x)ln2)=2^sin2x
Sehingga:

=e^(2x+1)ln3 (2ln3)+e^((sin⁡(2x)ln2) (2cos⁡(2x) ln⁡2)

=3^(2x+1) (2ln3)+2^sin2x (2 cos⁡(2x) ln⁡2)

 
0

Tentukanlah integral dari a. ∫[e^(3/x)/x^2] dx b. ∫x^2/(x^3+2) dx

Posted by andi telaumbanua on Jul 28, 2018 in Matematika

Tentukanlah

a. ∫[e^(3/x)/x^2] dx
b. ∫x^2/(x^3+2) dx

Jawab:

a. Misalkan:
u = 3/x
dx = (-du x^2)/3

maka:

∫[e^(3/x)]/[x^2] dx= ∫e^u/x^2 [((-du x^2)/3)]

=-1/3 ∫e^u du

=-1/3 (e^u )

=-1/3 e^(3/x)+C

b. Misalkan:

u = x^3+2
dx = du/(3x^2 )

maka:

∫x^2/(x^3+2) dx =∫x^2/u (du/(3x^2 ))

=1/3 ∫du/u

=1/3 (ln u)+C

=1/3 ln⁡(x^3+2)+C

 
0

Tentukan turunan pertama dari  x^2 sin ⁡(xy) + y = x

Posted by andi telaumbanua on Jul 28, 2018 in Matematika

Tentukan turunan pertama dari  x^2  sin⁡(xy)+ y=x

Jawab:

d/dx(x^2  sin(xy)+d/dx (y) = d/dx (x)

Pertama Turunkan: d/dx(sin⁡(xy)

d/dx(sin⁡(xy)=[ (1)(y)+ (x)(dy/dx)][cos⁡(xy)]

=(y+x dy/dx)(cos⁡(xy)

=y cos⁡(xy)+x dy/dx  cos(⁡xy)

Maka:

 

d/dx(x^2 sin(xy))+ d/dx (y)= d/dx (x)

2x(sin(xy))+x^2 (y cos⁡(xy)+ x dy/dx cos⁡(xy)+dy/dx =1

2x sin(xy)+x^2 ycos(xy)+x^3 dy/dx cos⁡(xy)+dy/dx = 1

dy/dx [x^3  cos⁡(xy)+1]= 1-2xsin(xy) – x^2 ycos(xy)

dy/dx = [1-2xsin(xy)-x^2 ycos(xy)]/[x^3  cos⁡(xy)+1]

Copyright © 2024 All rights reserved. Theme by Laptop Geek.