y = arc tg (x – 1)/(x +1)
Posted by andi telaumbanua on Feb 17, 2018 in Matematika |
Tentukan turunan pertama dari :
-
y = arc tg (x – 1)/(x +1) !
Jawab:
Karena: d/dx ( arc tg u)= 1/(1+ u^2 ) (du/dx)
d/dx (arc tg (x – 1)/(x +1))= 1/(1+ ((x – 1)/(x +1))^2 ) (d((x – 1)/(x +1))/dx)
d/dx (arc tg (x – 1)/(x +1))= 1/(((x+1)^2+ (x-1)^2)/(x+1)^2 ) [(1(x+1)- (x-1)1)/(x+1)^2 ]
d/dx (arc tg (x – 1)/(x +1))= (x+1)^2/((x+1)^2+ (x-1)^2 ) (2/(x+1)^2 )
d/dx (arc tg (x – 1)/(x +1))= 2/((x+1)^2+ (x-1)^2 )
d/dx (arc tg (x – 1)/(x +1))= 2/(( x^2+ 2x+1)+ (x^2- 2x+1))
d/dx (arc tg (x – 1)/(x +1))= 2/(2x^2+ 2)
d/dx (arc tg (x – 1)/(x +1))= 2/(2(x^2+ 1))
d/dx (arc tg (x – 1)/(x +1))= 1/(x^2+ 1)
for a more clear author please click the link below