y = (cos⁡ x)^x dan y = x^cos⁡x

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Carilah Turunan pertama dari fungsi berikut:

  1. y =  (cos⁡ x)^x

  2. y = x^cos⁡x

Jawab:

Use Logarithmic differentiation

1. ln y = ln (cos⁡ x)^x

ln y = x ln(cos x)

d/dx(ln⁡ y)=  d/dx(x ln⁡ cosx)

d/dy(ln⁡ y)dy/dx =  d/dx(x ) (ln cosx) + x d/dx(ln ⁡cos⁡ x)

1/y dy/dx = ln ⁡cos⁡ x + x 1/cos⁡x d/dx(cos⁡ x)

1/y dy/dx = ln⁡ cos⁡ x + x 1/cos⁡x (- sin⁡x)

1/y dy/dx = ln⁡ cos⁡ x – x sin⁡ x/cos ⁡x

1/y dy/dx = ln ⁡cos⁡ x – x tan⁡x

dy/dx = y ( ln ⁡cos⁡ x – x tan ⁡x )

dy/dx = (cos⁡ x)^x ( ln⁡ cos⁡ x – x tan⁡ x  )

ln y = ln x^cos⁡x

ln y = cos x lnx

d/dx(ln⁡ y) =  d/dx(cos x ln⁡ x)

d/dy(ln⁡ y) dy/dx = d/dx(cos x ) (ln x) + cos ⁡x  d/dx(ln⁡ x)

1/y dy/dx = – sin x ln x⁡ + cos x 1/x

1/y dy/dx =  cos ⁡x/x – sin x ln ⁡x⁡

dy/dx = y ( cos⁡ x/x – sin x ln ⁡x⁡)

dy/dx =  x^cos⁡ x ( cos ⁡x/x – sin x ln ⁡x⁡)

for a more clear author please click the link below

Carilah Turunan pertama dari fungsi berikut: 1. y = (cos⁡ x)^x 2. y = x^cos⁡x

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.