Posted by andi telaumbanua on Feb 17, 2018 in
Matematika |
Tentukanlah turunan dari :
y = x^sinx dan y = x^x
Jawab:
Use logarithmic derivative
1. ln y = ln x^sinx
ln y = sinx lnx
d/dx (ln y ) = d/dx(sinx lnx)
d/dy(ln y) dy/dx = [d/dx (sinx)] (lnx) + sin x [d/dx ( lnx)]
1/y dy/dx = cos x ln x + sinx/x
dy/dx = y (cos x ln x + sinx/x )
dy/dx = (x^sinx ) (cos x ln x + sinx/x )
2. ln y = ln x^x
ln y = x lnx
d/dx(ln y) = d/dx(x lnx)
d/dy(ln y) dy/dx = d/dx(x) (lnx) + x d/dx ( ln x)
1/y dy/dx = ln x+ x 1/x
1/y dy/dx = ln x+1
dy/dx = y (ln x + 1)
dy/dx = x^x (ln x + 1)