x^2 sin(xy)+y = x
Posted by andi telaumbanua on Feb 17, 2018 in Matematika |
Tentukan turunan pertama dari bentuk implisit x^2 sin(xy)+y=x !
Jawab :
Turunan bentuk implisit
Pertama kita turunkan dulu sin (xy)
Misalkan : u = xy
maka: du/dx=(1)(y)+ (x)(dy/dx)=y+x dy/dx
Maka: y = sin u maka: dy/du=cosu=cos(xy)
Sehingga :
dy/dx=(dy/du)(du/dx)
dy/dx=(cos(xy) )(y+x dy/dx)
dy/dx=y cos(xy)+ x cos(xy) dy/dx
Kedua kita turunkan x^2 sin(xy)
d(x^2 sin(xy)/dx = (2x)(sin(xy)) + (x^2)[y cos(xy)+ x cos(xy) dy/dx]
d(x^2 sin(xy)/dx = 2x sin(xy) + x^2 y cos(xy) + x^3cos(xy) dy/dx
Maka:
d(x^2 sin(xy)+y)/dx = d(x)/dx
2x sin(xy) + x^2 y cos(xy) + x^3cos(xy) dy/dx + d(y)/dx = 1
dy/dx [x^3cos(xy) + 1] = 1 – 2x sin(xy) -x^2 y cos(xy)
dy/dx =[1 – 2x sin(xy) – x^2 y cos(xy)] / [x^3cos(xy) + 1]