Rumus Turunan Pertama dari fungsi Invers Trigonometri dan fungsi hiperbol Trigonometri
Posted by andi telaumbanua on Feb 17, 2018 in Matematika |
Rumus Turunan Pertama dari fungsi Invers Trigonometri
-
d/dx(arc sin u )= 1/√(1- u^2 ) (du/dx)
-
d/dx(arc cos u )= (-1)/√(1- u^2 ) (du/dx)
-
d/dx ( arc tg u)= 1/(1+ u^2 ) (du/dx)
-
d/dx ( arc sec u)= 1/(|u| √(u^2- 1)) (du/dx)
-
d/dx ( arc ctg u)= (-1)/(1+ u^2 ) (du/dx)
-
d/dx ( arc cosec u)= (-1)/(|u| √(u^2- 1)) (du/dx)
Fungsi Hiperbol Trogonometri
-
Sinh = (e^x- e^(-x) )/2 cosh = (e^x+ e^(-x) )/2
-
tanh = (e^x- e^(-x) )/(e^x+ e^(-x) )
-
coth = (e^x+ e^(-x) )/(e^x- e^(-x) )
-
sech = (2 )/(e^x+ e^(-x) )
-
d/dx(sinh u ) = -coshu (du/dx) = (e^x+ e^(-x) )/2 (du/dx)
-
d/dx(cosh u ) = sinhu (du/dx) = (e^x- e^(-x) )/2 (du/dx)
-
d/dx(tanh u ) = sech^2 u (du/dx) = ((2 )/(e^x+ e^(-x) ))^2 (du/dx)
-
d/dx(coth u ) =Rumus Turunan Pertama dari fungsi hiperbol Trigonometri – cosech^2 u (du/dx) = -((2 )/(e^x- e^(-x) ))^2 (du/dx)
-
d/dx(sech u ) = – sech u tanh u (du/dx) = – ((2 )/(e^x+ e^(-x) ))^2 ((e^x- e^(-x) )/(e^x+ e^(-x) ))(du/dx)
-
d/dx(cosech u ) = – cosech u coth u (du/dx) = – ((2 )/(e^x- e^(-x) ))^2 ((e^x+ e^(-x) )/(e^x- e^(-x) ))(du/dx)