Posted by andi telaumbanua on Feb 17, 2018 in
Matematika
Hitunglah integral berikut:
-
∫ (2x+10)dx
-
∫ √(8+5x) dx
-
∫ dx /(3x+1)^2
Jawab:
1.∫ (2x+10) dx = 2/(1+1) x^(1+1)+ 10x+C = x^2+ 10x+C
2. Misalkan : u = 8 + 5x
Maka: du/dx=5 Sehingga: dx = 1/5 du
∫ √(8+5x) dx = ∫ (u)^(1/2) 1/5 du = 1/5 ∫ (u)^(1/2) du = (1/5) 1/(1/2+ 1) u^(1/2+1)+ C = (1/5) 2/3 u^(3/2)+ C = 2/15 (8+5x)^(3/2)+ C= 2/15 (8+5x) √(8+5x)+C
3. Misalkan: u = 3x+1
Maka: du/dx=3 Sehingga : dx = du/3
∫ dx /(3x+1)^2 = ∫ (du/3) /(u)^2 = 1/3 ∫ du /(u)^2 = 1/3 1/(-2+1) (u)^(-2+1) +C = 1 /(-3) u^(-1) + C = 1 / (-3) (3x+1)^(-1) + C = (-1) /(9x+3) + C
for a more clear author please click the link below
Posted by andi telaumbanua on Feb 17, 2018 in
Matematika
Rumus lengkap Integral tak tentu
-
∫du = u+c
-
∫a du = a ∫du
-
∫(du+dv) = ∫du+ ∫dv
-
∫(du-dv) = ∫du- ∫dv
-
∫u^n du = u^n/(n+1)+ C ,n tidak sama dengan-1
-
∫du/u = ln| u | + C
-
∫e^u du = e^u+ c
-
∫a^u du = a^u / lna + C ,a>0 dan a ≠1
-
∫√(a^2- x^2 ) dx = x/2 √(a^2- x^2 )+ a^2/2 arc sin (x/a)+ C
Rumus Integral untuk fungsi Trigonometri
-
∫sin u du = – cos u+C
-
∫cos u du = sin u+C
-
∫ sec^2 u du = tg u+C
-
∫ cosec^2 u du = – ctg u+C
-
∫ sec u tg u du = sec u+C
-
∫ cosec u ctg u du = – cosec u+C
-
∫ sin^n ax cos ax dx = 1/a ∫ u^n du = 1/a u^(n+1)/(n+1)+C ,n ≠ -1 dan u=sinax
-
∫ sin^n ax cos ax dx = 1/a ∫ u^n du = 1/a ln| u |+C ,n= -1 dan u = sinax
-
∫ sin ^n u du = – (sin^(n-1) u cosu)/n+ (n-1)/n ∫ sin^(n-2) u du+c
-
∫ cos ^n u du= (cos^(n-1) u sin u)/n+ (n-1)/n ∫ cos^(n-2) u du+c
-
∫ sin ax sin bx dx = 1/2 [ sin(a-b)x/(a-b)- (sin ( a+b)x)/(a+b)]+C
-
∫ sin ax cos bx dx = -1/2 [ cos(a-b)x/(a-b)+ (cos ( a+b)x)/(a+b)]+C
-
∫ cos ax cos bx dx = 1/2 [ sin(a-b)x/(a-b)+ (sin ( a+b)x)/(a+b)]+C
-
∫ sin^2 ax dx = 1/2 (x-sin2ax/2a) +C
-
∫ cos^2 ax dx = 1/2 (x+ sin2ax/2a) +C
-
∫ x^n sin ax dx = (-1) / a x^n cos ax+ n/a ∫ x^(n-1) cos ax dx
-
∫ x^n cos ax dx = 1 / a x^n sin ax+ n/a ∫ x^(n-1) sin ax dx
Rumus Integral dari Fungsi invers trigonometri
-
∫ du/√(1- u^2 ) = arc sin u+C
-
∫ -du/√(1- u^2 ) = arc cos u+C
-
∫ du/(1+u^2 ) = arc tg u+C
-
∫ -du/(1+u^2 ) = arc ctg u+C
-
∫ du/(u √( u^2- 1)) = arc sec |u|+C
-
∫ -du/(u √( u^2- 1)) = arc cosec |u|+C
Rumus integral Parsial
∫ v du= uv- ∫ u dv
Rumus Integral Rangkap dua melalui daerah tertutup s
1. ∬ f(x,y) dxdy = ∫_(b_1)^(b_2) ∫_(x_1)^(x_2) f(x,y) dxdy
2. ∬f(x,y) dxdy = ∫_(a_1)^(a_2) ∫_(y_1)^(y_2) f(x,y) dxdy
for a more clear author please click the link below
Posted by andi telaumbanua on Feb 17, 2018 in
Matematika
Tentukanlah Turunan pertama dari fungsi hiperbol trigonometri berikut!
-
y = x sinh x
-
y = x^2/cosh x
Jawab:
1. dy/dx=1(sinh x) – x d/dx(sinh x)
dy/dx = sinh x + x cosh x
Atau
dy/dx = (e^x- e^(-x) )/2+ x ((e^x+ e^(-x) )/2)
2. dy/dx = (2x(cosh x) – x^2 (sinh x)) / (cosh x)^2
Atau :
dy/dx = (2x((e^x+ e^(-x) )/2)-x^2 ((e^x- e^(-x) )/2) )/((e^x+ e^(-x) )/2)^2
for a more clear author please click the link below
Posted by andi telaumbanua on Feb 17, 2018 in
Matematika
Rumus Turunan Pertama dari fungsi Invers Trigonometri
-
d/dx(arc sin u )= 1/√(1- u^2 ) (du/dx)
-
d/dx(arc cos u )= (-1)/√(1- u^2 ) (du/dx)
-
d/dx ( arc tg u)= 1/(1+ u^2 ) (du/dx)
-
d/dx ( arc sec u)= 1/(|u| √(u^2- 1)) (du/dx)
-
d/dx ( arc ctg u)= (-1)/(1+ u^2 ) (du/dx)
-
d/dx ( arc cosec u)= (-1)/(|u| √(u^2- 1)) (du/dx)
Fungsi Hiperbol Trogonometri
-
Sinh = (e^x- e^(-x) )/2 cosh = (e^x+ e^(-x) )/2
-
tanh = (e^x- e^(-x) )/(e^x+ e^(-x) )
-
coth = (e^x+ e^(-x) )/(e^x- e^(-x) )
-
sech = (2 )/(e^x+ e^(-x) )
-
d/dx(sinh u ) = -coshu (du/dx) = (e^x+ e^(-x) )/2 (du/dx)
-
d/dx(cosh u ) = sinhu (du/dx) = (e^x- e^(-x) )/2 (du/dx)
-
d/dx(tanh u ) = sech^2 u (du/dx) = ((2 )/(e^x+ e^(-x) ))^2 (du/dx)
-
d/dx(coth u ) =Rumus Turunan Pertama dari fungsi hiperbol Trigonometri – cosech^2 u (du/dx) = -((2 )/(e^x- e^(-x) ))^2 (du/dx)
-
d/dx(sech u ) = – sech u tanh u (du/dx) = – ((2 )/(e^x+ e^(-x) ))^2 ((e^x- e^(-x) )/(e^x+ e^(-x) ))(du/dx)
-
d/dx(cosech u ) = – cosech u coth u (du/dx) = – ((2 )/(e^x- e^(-x) ))^2 ((e^x+ e^(-x) )/(e^x- e^(-x) ))(du/dx)
for a more clear author please click the link below
Posted by andi telaumbanua on Feb 17, 2018 in
Matematika
Tentukan turunan pertama dari :
-
y = arc tg (x – 1)/(x +1) !
Jawab:
Karena: d/dx ( arc tg u)= 1/(1+ u^2 ) (du/dx)
d/dx (arc tg (x – 1)/(x +1))= 1/(1+ ((x – 1)/(x +1))^2 ) (d((x – 1)/(x +1))/dx)
d/dx (arc tg (x – 1)/(x +1))= 1/(((x+1)^2+ (x-1)^2)/(x+1)^2 ) [(1(x+1)- (x-1)1)/(x+1)^2 ]
d/dx (arc tg (x – 1)/(x +1))= (x+1)^2/((x+1)^2+ (x-1)^2 ) (2/(x+1)^2 )
d/dx (arc tg (x – 1)/(x +1))= 2/((x+1)^2+ (x-1)^2 )
d/dx (arc tg (x – 1)/(x +1))= 2/(( x^2+ 2x+1)+ (x^2- 2x+1))
d/dx (arc tg (x – 1)/(x +1))= 2/(2x^2+ 2)
d/dx (arc tg (x – 1)/(x +1))= 2/(2(x^2+ 1))
d/dx (arc tg (x – 1)/(x +1))= 1/(x^2+ 1)
for a more clear author please click the link below
Tentukan turunan pertama dari y = arc tg (x – 1)/(x +1)