integral dari : ∫ cos^4 x dx

Posted by andi telaumbanua on Feb 17, 2018 in Matematika |

Tentukanlah integral dari : ∫ cos^4 x dx

Jawab:

∫cos ^n u du = (cos^(n-1) u sin ⁡u) / n +  (n-1) /n ∫ cos^(n-2) u du + c

Maka:

∫ cos^4 x dx = (cos^3 x sin ⁡x) /4 + (4-1) /4 ∫ cos^2 x dx

∫ cos^4 x dx =  (cos^3 x sin ⁡x) /4 + 3/4 ( ( cos x sin ⁡x) /2 + (2-1)/2 ∫ (cos⁡x)^(2-2) dx )

∫ cos^4 x dx = (cos^3 x sin ⁡x) /4 + 3/4 ( ( cos x sin ⁡x) /2 + 1/2 ∫ (cos⁡x)^0 dx )

∫ cos^4 x dx = (cos^3 x sin ⁡x) /4 + 3/4 ( ( cos x sin ⁡x) /2 + 1/2 ∫ dx )

∫ cos^4 x dx = (cos^3 x sin ⁡x) /4 +  3/4 (( cos x sin ⁡x) /2 + 1/2 (x) )  + C

∫ cos^4 x dx =  (cos^3 x  sin ⁡x) /4 + ( 3 cos x sin ⁡x) /8 + 3/8 x + C

 

 

 

for a more clear author please click the link below

Tentukanlah integral dari : ∫ cos^4 x dx

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.