first derivative from x^y = y^x
Posted by andi telaumbanua on Feb 17, 2018 in Matematika |
Find the first derivative from
x^y = y^x
Answare:
Use logarithmic derivative to find the first derivative this function
ln x^y = ln y^x
y ln x = x ln y
y = (x lny) / lnx
so:
d/dx (x ln y) = d/dx (x) ln y + x d/dx (ln y)
= ln y + x [d/dy (ln y) dy/dx]
= ln y + x ( 1/y) dy/dx
= ln y + x/y dy/dx
So:
y = (x lny) / ln x
dy/dx = [ d/dx(x lny) ln x – x ln y d/dx (ln x) ] / (ln x)^2
dy/dx = [ ( ln y + x/y dy/dx) ln x – x ln y 1/x] / (ln x)^2
dy/dx = [ ln y ln x + lnx ( x/y) dy/dx – ln y ] / (ln x)^2
ln^2 x dy/dx = ln y ln x + lnx ( x/y) dy/dx – ln y
ln^2 x dy/dx – x/y ln x dy/dx = ln y ln x – ln y
dy/dx (ln^2 x – x/y lnx ) = ln y (lnx – 1)
dy/dx = [ln y ln (x-1)] / [ln^2 x – x/y ln x]