Posted by andi telaumbanua on Feb 13, 2018 in
Matematika |
Tentukan turunan pertama dari bentuk implisit y+sin(xy)= 1 !
Jawab :
Turunan bentuk implisit
Pertama kita turunkan dulu sin(xy)
Misalkan : u = xy
maka: du/dx=(1)(y)+ (x)(dy/dx)=y+x dy/dx
Maka: y = sin u
maka: dy/du=cos u=cos(xy)
Sehingga :
dy/dx=(dy/du)(du/dx)
dy/dx=(cos(xy) )(y+x dy/dx)
dy/dx= y cos(xy) + x cos(xy) dy/dx
Maka:
d[y+sin(xy)]/dx = d(1)/dx
dy/dx + d(sin(xy) )/dx=0
dy/dx + y cos(xy)+ x cos(xy) dy/dx=0
dy/dx [1 + x cos(xy)] = – (y cos (xy) )
dy/dx = [-y cos (xy)] / [1 + x cos(xy)]