turunan fungsi implisit dari tan⁡(xy) – 2y = 0

Posted by andi telaumbanua on Feb 13, 2018 in Matematika |

Tentukan turunan pertama dari bentuk implisit tan⁡(xy)- 2y = 0 !

Jawab :

Turunan bentuk implisit

Pertama kita turunkan dulu tan(xy)

Misalkan : u = xy

maka: du/dx=(1)(y)+ (x)(dy/dx)=y+x dy/dx

Maka: y = tan u

maka: dy/du=sec^2⁡u=sec^2⁡(xy) 

Sehingga :

dy/dx =(dy/du)(du/dx)

dy/dx =(sec^2⁡(xy) )(y+x dy/dx)

dy/dx =y sec^2⁡(xy)+ x sec^2⁡(xy) dy/dx

Maka:

(d(tan⁡ (xy)- 2y))/dx = (d(0))/dx

d(tan (xy))/dx- d(2y)/dx =0

y sec^2⁡(xy)+ x sec^2⁡(xy) dy/dx

-(d(2y)/dx)(dy/dx) =0

y sec^2⁡(xy)+ x sec^2⁡(xy) dy/dx

-2 dy/dx =0

dy/dx [x sec^2⁡(xy)-2] =-y sec^2⁡(xy)

dy/dx = [-y sec^2⁡(xy)]/[x sec^2⁡(xy) – 2 ]

 

 


				

Reply

Copyright © 2024 All rights reserved. Theme by Laptop Geek.