Posted by andi telaumbanua on Feb 11, 2018 in
Matematika |
Carilah dy/dx dari fungsi sin(x + y) = y^2 cosx !
Jawab :
Gunakan metode turunan implisit
(d (sin(x + y) ))/dx = (d(y^2 cosx ))/dx
cos (x + y) ((d(x+ y))/dx) = ((d(y^2))/dx)(cosx)+(y^2 )((d(cosx))/dx)
cos (x + y) [(d(x)/dx)+(dy/dx)]=(d(y^2 )/dy)(dy/dx)(cosx)+ y^2 (- sin x)
cos (x + y) [ 1+dy/dx]=2y dy/dx(cosx)- y^2 (sin x)
cos (x + y)+ dy/dx cos (x+y) =2y dy/dx(cosx)- y^2 (sin x)
cos (x + y) + y^2 sinx = 2y dy/dx cosx – dy/dx cos (x+y)
cos (x + y) + y^2 sinx = dy/dx[2y cosx-cos (x+y) ]
dy/dx= (cos (x + y) + y^2 sinx)/(2y cosx-cos (x+y) )